Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants.

Identifieur interne : 002524 ( Main/Exploration ); précédent : 002523; suivant : 002525

Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants.

Auteurs : Wen-Kai Jiang [République populaire de Chine] ; Yun-Long Liu ; En-Hua Xia ; Li-Zhi Gao

Source :

RBID : pubmed:23396833

Descripteurs français

English descriptors

Abstract

The evolution of genes and genomes after polyploidization has been the subject of extensive studies in evolutionary biology and plant sciences. While a significant number of duplicated genes are rapidly removed during a process called fractionation, which operates after the whole-genome duplication (WGD), another considerable number of genes are retained preferentially, leading to the phenomenon of biased gene retention. However, the evolutionary mechanisms underlying gene retention after WGD remain largely unknown. Through genome-wide analyses of sequence and functional data, we comprehensively investigated the relationships between gene features and the retention probability of duplicated genes after WGDs in six plant genomes, Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), soybean (Glycine max), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays). The results showed that multiple gene features were correlated with the probability of gene retention. Using a logistic regression model based on principal component analysis, we resolved evolutionary rate, structural complexity, and GC3 content as the three major contributors to gene retention. Cluster analysis of these features further classified retained genes into three distinct groups in terms of gene features and evolutionary behaviors. Type I genes are more prone to be selected by dosage balance; type II genes are possibly subject to subfunctionalization; and type III genes may serve as potential targets for neofunctionalization. This study highlights that gene features are able to act jointly as primary forces when determining the retention and evolution of WGD-derived duplicated genes in flowering plants. These findings thus may help to provide a resolution to the debate on different evolutionary models of gene fates after WGDs.

DOI: 10.1104/pp.112.200147
PubMed: 23396833
PubMed Central: PMC3613460


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants.</title>
<author>
<name sortKey="Jiang, Wen Kai" sort="Jiang, Wen Kai" uniqKey="Jiang W" first="Wen-Kai" last="Jiang">Wen-Kai Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201</wicri:regionArea>
<wicri:noRegion>Kunming 650201</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yun Long" sort="Liu, Yun Long" uniqKey="Liu Y" first="Yun-Long" last="Liu">Yun-Long Liu</name>
</author>
<author>
<name sortKey="Xia, En Hua" sort="Xia, En Hua" uniqKey="Xia E" first="En-Hua" last="Xia">En-Hua Xia</name>
</author>
<author>
<name sortKey="Gao, Li Zhi" sort="Gao, Li Zhi" uniqKey="Gao L" first="Li-Zhi" last="Gao">Li-Zhi Gao</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23396833</idno>
<idno type="pmid">23396833</idno>
<idno type="doi">10.1104/pp.112.200147</idno>
<idno type="pmc">PMC3613460</idno>
<idno type="wicri:Area/Main/Corpus">002703</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002703</idno>
<idno type="wicri:Area/Main/Curation">002703</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002703</idno>
<idno type="wicri:Area/Main/Exploration">002703</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants.</title>
<author>
<name sortKey="Jiang, Wen Kai" sort="Jiang, Wen Kai" uniqKey="Jiang W" first="Wen-Kai" last="Jiang">Wen-Kai Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201</wicri:regionArea>
<wicri:noRegion>Kunming 650201</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yun Long" sort="Liu, Yun Long" uniqKey="Liu Y" first="Yun-Long" last="Liu">Yun-Long Liu</name>
</author>
<author>
<name sortKey="Xia, En Hua" sort="Xia, En Hua" uniqKey="Xia E" first="En-Hua" last="Xia">En-Hua Xia</name>
</author>
<author>
<name sortKey="Gao, Li Zhi" sort="Gao, Li Zhi" uniqKey="Gao L" first="Li-Zhi" last="Gao">Li-Zhi Gao</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Evolution, Molecular (MeSH)</term>
<term>Flowers (genetics)</term>
<term>Gene Duplication (genetics)</term>
<term>Genes, Duplicate (genetics)</term>
<term>Genes, Plant (genetics)</term>
<term>Logistic Models (MeSH)</term>
<term>Magnoliopsida (genetics)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Principal Component Analysis (MeSH)</term>
<term>Segmental Duplications, Genomic (genetics)</term>
<term>Selection, Genetic (MeSH)</term>
<term>Synteny (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse en composantes principales (MeSH)</term>
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Duplication de gène (génétique)</term>
<term>Duplications génomiques segmentaires (génétique)</term>
<term>Fleurs (génétique)</term>
<term>Gènes de plante (génétique)</term>
<term>Gènes dupliqués (génétique)</term>
<term>Magnoliopsida (génétique)</term>
<term>Modèles logistiques (MeSH)</term>
<term>Synténie (génétique)</term>
<term>Sélection génétique (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Flowers</term>
<term>Gene Duplication</term>
<term>Genes, Duplicate</term>
<term>Genes, Plant</term>
<term>Magnoliopsida</term>
<term>Segmental Duplications, Genomic</term>
<term>Synteny</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Duplication de gène</term>
<term>Duplications génomiques segmentaires</term>
<term>Fleurs</term>
<term>Gènes de plante</term>
<term>Gènes dupliqués</term>
<term>Magnoliopsida</term>
<term>Synténie</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Logistic Models</term>
<term>Molecular Sequence Annotation</term>
<term>Principal Component Analysis</term>
<term>Selection, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse en composantes principales</term>
<term>Annotation de séquence moléculaire</term>
<term>Modèles logistiques</term>
<term>Sélection génétique</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The evolution of genes and genomes after polyploidization has been the subject of extensive studies in evolutionary biology and plant sciences. While a significant number of duplicated genes are rapidly removed during a process called fractionation, which operates after the whole-genome duplication (WGD), another considerable number of genes are retained preferentially, leading to the phenomenon of biased gene retention. However, the evolutionary mechanisms underlying gene retention after WGD remain largely unknown. Through genome-wide analyses of sequence and functional data, we comprehensively investigated the relationships between gene features and the retention probability of duplicated genes after WGDs in six plant genomes, Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), soybean (Glycine max), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays). The results showed that multiple gene features were correlated with the probability of gene retention. Using a logistic regression model based on principal component analysis, we resolved evolutionary rate, structural complexity, and GC3 content as the three major contributors to gene retention. Cluster analysis of these features further classified retained genes into three distinct groups in terms of gene features and evolutionary behaviors. Type I genes are more prone to be selected by dosage balance; type II genes are possibly subject to subfunctionalization; and type III genes may serve as potential targets for neofunctionalization. This study highlights that gene features are able to act jointly as primary forces when determining the retention and evolution of WGD-derived duplicated genes in flowering plants. These findings thus may help to provide a resolution to the debate on different evolutionary models of gene fates after WGDs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23396833</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>161</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2013</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants.</ArticleTitle>
<Pagination>
<MedlinePgn>1844-61</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.112.200147</ELocationID>
<Abstract>
<AbstractText>The evolution of genes and genomes after polyploidization has been the subject of extensive studies in evolutionary biology and plant sciences. While a significant number of duplicated genes are rapidly removed during a process called fractionation, which operates after the whole-genome duplication (WGD), another considerable number of genes are retained preferentially, leading to the phenomenon of biased gene retention. However, the evolutionary mechanisms underlying gene retention after WGD remain largely unknown. Through genome-wide analyses of sequence and functional data, we comprehensively investigated the relationships between gene features and the retention probability of duplicated genes after WGDs in six plant genomes, Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), soybean (Glycine max), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays). The results showed that multiple gene features were correlated with the probability of gene retention. Using a logistic regression model based on principal component analysis, we resolved evolutionary rate, structural complexity, and GC3 content as the three major contributors to gene retention. Cluster analysis of these features further classified retained genes into three distinct groups in terms of gene features and evolutionary behaviors. Type I genes are more prone to be selected by dosage balance; type II genes are possibly subject to subfunctionalization; and type III genes may serve as potential targets for neofunctionalization. This study highlights that gene features are able to act jointly as primary forces when determining the retention and evolution of WGD-derived duplicated genes in flowering plants. These findings thus may help to provide a resolution to the debate on different evolutionary models of gene fates after WGDs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Wen-kai</ForeName>
<Initials>WK</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Yun-long</ForeName>
<Initials>YL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>En-hua</ForeName>
<Initials>EH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Li-zhi</ForeName>
<Initials>LZ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>02</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035264" MajorTopicYN="N">Flowers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020131" MajorTopicYN="N">Genes, Duplicate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016015" MajorTopicYN="N">Logistic Models</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019684" MajorTopicYN="N">Magnoliopsida</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025341" MajorTopicYN="N">Principal Component Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056916" MajorTopicYN="N">Segmental Duplications, Genomic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012641" MajorTopicYN="N">Selection, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026801" MajorTopicYN="N">Synteny</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23396833</ArticleId>
<ArticleId IdType="pii">pp.112.200147</ArticleId>
<ArticleId IdType="doi">10.1104/pp.112.200147</ArticleId>
<ArticleId IdType="pmc">PMC3613460</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1999 Apr;151(4):1531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10101175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15800040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 May;6(5):e1000944</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20485561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Dec;22(12):2472-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16107592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):395-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2009 Jan;96(1):336-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2008 Nov;25(11):2445-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18728074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Dec;23(12):2467-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Jan;23(1):144-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1679-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2007 Dec;17(6):505-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2010;10:145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20478072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jul 10;424(6945):194-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12853957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(10):R209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17916239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Aug;13(8):1749-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11487690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Feb;16(2):182-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16365379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Mar;61(5):752-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20003165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12374856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007;8:41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17284313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Jun;37(6):588-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15895079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20470436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jun;16(6):738-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16702410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Mar 1;21(5):650-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15388519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Sep;23(9):1808-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):472-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19966307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Dyn. 2008;4:25-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18756075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 5;473(7345):97-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2008 Jun;25(6):1003-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18296698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 20;326(5956):1112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Jan;22(1):95-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21974993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Feb;175(2):933-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17151249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 1999 Oct;2(5):548-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2005 Oct;21(10):548-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16098632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Feb;13(2):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1998 Feb;14(2):46-9; discussion 49-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9520595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2008;42:443-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18983261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 8;428(6983):617-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Oct 21;431(7011):946-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Feb 12;20(3):307-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14960456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Funct Genomics. 2003;3(1-4):35-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12836683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:433-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2006 Nov;22(11):597-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16979781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(1):54-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19925558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jan 29;457(7229):551-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19189423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 9;444(7116):171-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Feb;11(2):97-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20051986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2730-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16467140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2006 Dec;22(12):642-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17045359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 15;290(5499):2114-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2007;3:129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17667951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Sep;22(9):1865-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jan 14;463(7278):178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20075913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 May;7(5):337-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16619049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W609-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 Jun;76(6):2858-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">288072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jan;154(1):459-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10629003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Dec 12;20(18):3643-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2967-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2008 Dec 31;427(1-2):19-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18835337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Aug;19(8):1404-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19439512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1995 Jan;139(1):421-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7705642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2004 Oct;20(10):461-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15363896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Apr;14(4):1163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15773943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2007 Aug;23(8):375-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17512629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Oct;14(10A):1916-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1997 Oct;13(5):555-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002;3(2):RESEARCH0008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11864370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Sep;12(9):1523-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15161969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Oct;3(10):e314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16128622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2007 Mar 2;3(3):e33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17335345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jul;12(7):1093-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10899976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13875-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19667210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 Mar;2(3):E55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Jan;23(1):30-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16120800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Jun 7;15(11):1016-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15936271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2000;34:401-437</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11092833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8333-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18541921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20687943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Nov 19;306(5700):1367-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15550669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jul;16(7):805-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16818725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D690-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Jan;42(1):225-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10688139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):336-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 May;37(5):501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15806101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Jan;4(1):e11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18208334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biostatistics. 2003 Apr;4(2):249-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gao, Li Zhi" sort="Gao, Li Zhi" uniqKey="Gao L" first="Li-Zhi" last="Gao">Li-Zhi Gao</name>
<name sortKey="Liu, Yun Long" sort="Liu, Yun Long" uniqKey="Liu Y" first="Yun-Long" last="Liu">Yun-Long Liu</name>
<name sortKey="Xia, En Hua" sort="Xia, En Hua" uniqKey="Xia E" first="En-Hua" last="Xia">En-Hua Xia</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Jiang, Wen Kai" sort="Jiang, Wen Kai" uniqKey="Jiang W" first="Wen-Kai" last="Jiang">Wen-Kai Jiang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002524 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002524 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23396833
   |texte=   Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23396833" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020